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Allllnd-The axisymmetric dynamical problem is presented for an infinite slab weakened by a penny­
sbaped crack. The crack is usumed to be opened by the application of a step stress. Laplace and Henkel
traDlform techniques are used to reduce the probelm to the solution of a Fredholm intqral equation of the
second kind in a traDsformed plane. Finally the problem is solved by a special numerical Laplace inversion
technique. Numerical results on the dynamic stress·intensity factor are obtained. The in8uence of inertia.
finite boundaries and their interactions on the load transfer to the crack are considered.

I. INTRODUCTION
In fracture mechanics, it is important to reveal the behaviour of dynamic stresses in the vicinity
of crack or cracks. The dynamic response of a penny-shaped crack under the action of impact
loads in specimens having large dimensions has been treated by many authors[l-3]. In above
papers the effect of boundary is neglected in the analysis. In presence of finite boundaries the
problem becomes more complicated due to interaction between the scattered waves from the
crack edge and the reflected waves from the boundaries. Recently Chen[4] has solved the
problem of elastodynamic response of a penny-shaped crack in an infinite cylinder of finite
radius.

In this paper we present the solution of the impact load on a penny-shaped crack placed
parallel at the centre of an elastic slab. Two cases are considered (i) the boundary is stress free
(ii) the slab is confined between two rigid planes. For each of these cases, using Laplace and
Hankel transforms we reduce the problem to the solution of a pair of integral equations and
finally to a Fredholm integral equation of the second kind in the Laplace transformed plane. To
recover the time dependent solution a numerical technique used by Miller and Guy is adopted.
Finally the dynamic stress-intensity factor is calculated. The influence of inertia, geometry and
their interactions are shown graphically.

2. FORMULATION OF THE PROBLEM

We consider an infinite slab of thickness "2b" containing a centrally placed penny-shaped
crack of radius "a". The impact of load is applied symmetrically about z-axis through which
the penny-shaped crack is centered. The axi-symmetric displacements and stresses can be
derived from two potential functions 4I(oy, z, t) and I/I( oy, z, t) as

_ a41 al/l a41 al/l 1/1
uT( oy, z, t) - aoy - az' uz( 'Y, z, t) =az + aoy +'1

(T (1 z t) =2/1.1.. (!1. _!1.) +AV2.1.
T ' , ,.. aoy aoy az ."

u,(oy, z, t) =¥ (*- :~) +AV
241

U(1 z t)=2u.!.(!1.+!1.+!I!.)+AV2.1.z , , ,.. az az aoy oy ."

'T (1 z t) = II. [.!. (2!1._!1.) +.!. (!1.+!I!.)]
'I'Z " ,.. az iJ'Y az a'Y aoy oy

1'.,. =1'1z =0
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where
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It can easily be shown that the equations of motions are satisfied if 4J and ." are governed by
the wave equations

where
_(A +21£)1/2

CI- P ,
_ (1L)1/2

C2- ­
P

(4)

p, being the mass density of the elastic material. The problem of finding the distribution of
stresses in the vicinity of the crack is equivalent to that of finding the distribution of stresses in
o=e:: z =e:: b, a =e:: y< 00 when its plane boundary z =0 is subjected to following conditions

ooz( 'Y, 0, I) =- oooH(/), 0~ Y< a

uz( 'Y, 0, I) =0, a < y < 00

'Tyz ( 'Y, 0, I) =0, '9y..

For the boundary z=± b, we take following two types of conditions.

Case 1
The boundary is free from tractions, i.e.

ooz('Y, b, I) ='Tyz ( 'Y, b, I) =O.

Case 2
The slab is confined between rigid planes, i.e.

Uz ( 'Y, b, I) =uy ( 'Y, b, I) =O.

3. METHOD OF SOLUTION

We define Laplace transform pair by

(5)

(6)

(7)

(8a)

(8b)

rep) =r f(/) e-pt dt, f(t) =_1 i rep) ePt dp
217" B, f

(9)

By represents the Bromwich path.
Now in the Laplace transform plane the eqns (4) and the boundary conditions (5)-(8)

becomes

(10)

oo~('Y,O,P)=-~o, O=e::'Y<a

u~('Y,O,p)=O, a<'Y<oo

'T~z( 'Y, 0, p) =0, V'Y

oo~( 'Y, b, p) ='T~z('Y, b, p) =0

u~( 'Y, b, p) ='T~(y, b, p) =O.

(11)

(12)

(13)

(14a)

(14b)
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The eqns (10) may be solved with the help of Hankel transform to render

"'*(1, z, p) =L" lACs, p)Chvlz +B(s, p)Shv.z]loCn) ds

"'·(1, z,p) =L" [C(s,P)ChV2Z+D(s, P)ShV2Z]J,(S1) ds

where

(1S)

j =1,2

with s-plane being cut such that vJ" 0 for 0 EO S < co. Applying (13), we get

(S2 +V 2)
B(s, p) =- 2 2 E(s,p), c(s,p) =sE(s,p).v,

From conditions (11) and (12) we obtain

L" E(s, p)IO<s.,) ds = 0, a < 1 < co

1.. {(vl +s2)A(s, p) +2v2sD(s, p)}cl1/ ) d _ _ tTocl
o pZ(1- 1(2) O\S1 s - p3(1 - K2)p.'

Xl =cllc.2, OEO Y< a.

Case 1
Applyiq boundary condition (14&), we get

A(s,p)=~ E(s,p), D(s,p) = (l3 E(s,p)(l, (l,

where

(l, =(Vl+S2)2Shvzb· Chv,b -4v,vzszChvzb· Shv.b

(vl+ SZ)3
(lz = 2vzsz(sz+ vlXl- Chv,b . Chvzb) + 2 Shv,b . Shvzb

v.

(l3 =s(vl + sz)z(1- Chvzb . Chv,b) +4v'Jlzs3Shvzb . Shv.b.

Case 2
Boundary condition (14b) gives

(16)

(17)

(18)

(19a)

Jlz2 +SZ
A(s, p) = 2 coth v,bE(s, p), D(s, p) =- s coth vzbE(s, p). (19b)v,

Now with the aid of (19), (18) reduces to

r ~cz
Jo sfi(s, p)E(s, p)IO<sr) ds =- p3(1 ~ Kz>p.' ; =1,2 (20)

where the subscripts 1 and 2 correspond to Case 1and Case 2 respectively and
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The integral equations (17) is automatically satisfied by taking

i= 1,2 (21)

where <pT and <p! are unknown functions corresponding to Case 1 and Case 2 respectively.
With the help of (21), (20) reduces to

(22)

where

The values of <p'(l,p) (i:; 1,2) are evaluated after solvina numerically the intearal equa­
tions (22) by Fox and Goodwin[S] method. Then <pT(l,p), <p!(l,p) as functions of C,jPII for
difterent values of h( =alb) are presented graphically in Figs. 1 and 2. They are used
subsequently for determining the dynamic stress intensity factor.

4. NUMERICAL DISCUSSIONS

Numerical computations are carried out on IBM 370/155 computer at the Computer Centre
I.I.T., Madras. The Fredholm integral equation (22) is solved numerically by Fox and
Ooodwin[5] method and the values of l/I'U,p) (i:; 1,2) are obtained at discrete points of c,jpa
and e:; 0.1,0.2, ... , 1.0. The graphs of 1/1'(1, 1') (i = 1, 2) vs c,jpa are presented in two graphs
for different values of h. Then numerical Laplace inversion technique developed by MiUer and
Ouy[6] is used to obtain the dynamic stress-intensity factor at the crack tips.

S. CONCLUSION

Figures 1 and 2 show the variations of 1/11(1,1') (i:; 1,2) vs c,jpa. From these figures it is
observed that for the slab having stress free edge the values are more in comparison to the
infinite medium, where as for slab confined between two rigid planes it is just opposite. Figures
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Table I. Comparison between the static and maximum dynamic stress-intensity factors

h 0.0 O.S 1.0 IS 2.0

K11.. 1.19 1.53 1.82 1.90 1.91
KIll 0.14 1.02 1.23 1.62 U5

Klz" 1.19 1.11 0.91 0.182 0.668
KI1.s 0.74 0.957 0.72 0.102 0.632

3and 4 depict the variations of normalised dynamic stress-intensity factors (1fKl1(t)/2uov'a and
1fKI2(t)/2uov'a) vs c2t/a for If =0.29 and for different values of h (0.5. 1.0. 1.5. 2.0) and are
compared with that of infinite medium[7]. The general feature which can be noticed from these
JI'lphs is that the stress-intensity factor rise rapidly with time reaching a peak. then decreases
in magnitude and oscillates about its corresponding static value. For stress free boundary (Fig.
3) the peak value increases with h. where as for the slab confined between two riaid planes the
peak value decreases as h increases. In Fig. 4. the curves for h =0.0 It h =O.S intersect each
other for c2tla =2.0. The curves are somewhat disturbed in the intervals 0.2:s c2t/a :sO.S (Fig.
3). OJ"," c2tla ","0.6 (Fig. 4). It is interesting to note that these regions may correspond to the
first arrival of the reflected longitudinal and shear waves at the crack tips from the boundary.
Another interesting point is that when "t" is very large the problem reduces to the static case.
It is observed that the static stress-intensity factor for every h is less than the maximum
dynamic stress-intensity factor (for both the cases). The above comparison is given in Table 1.

In the figures Kll(t) and K I2(t) represent dynamic stress-intensity factors for Case I and
Case II respectively.

In Table I, KI
I
"'. KIll and K1

2m, Kl
2, represent maximum dynamic stress-intensity factor

and static stress-intensity factor for Case 1and Case 2 respectively.
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